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The concern of this work is the steady state periodic response having the
same period as the excitation of strongly non-linear oscillators �u� d _u�mu
�e1u2�u� e1u _u2 � e2u3 � P cosOt, where m=1, 0 or ÿ1, e1 and e1 are positive
parameters which may be arbitrarily large. Single-mode and two-mode
harmonic balance (HB) approximations, and second order perturbation-
multiple time scales (MMS) with reconstitution version I and version II
approximations to the steady state amplitude frequency response curves are
compared, for the case m=1 with each other, and with those obtained by
numerically integrating the equation of motion. The transformation of time
T=Ot and detuning in the square of forcing frequency are used in the MMS
with reconstitution version I and version II. The objective here is to assess the
accuracy of these approximate solutions in predicting the system response over
some range of system parameters by examining their ability or failure in
establishing the correct qualitative behavior of the actual (numerical) solution.
The cases m=0 and m=ÿ1, are studied for selected range of system
parameter, using the single and two modes harmonic balance method and
compared to those obtained numerically. It was shown that MMS version II, in
addition to being appreciably simpler than MMS version I, leads to more
accurate qualitative and quantitative results even when the non-linearity is not
necessarily small.

# 1999 Academic Press

1. INTRODUCTION

This work is concerned with the primary resonance response of a lightly damped
strongly non-linear harmonically driven oscillators with inertia and static
(displacement dependent) odd non-linearities for which the equation of motion
has the following form:
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�u� d _u�mu� e1u2�u� e1u _u2 � e2u3 � P cosOt: �1�
Here dots denote the time derivatives, d, e1, e2 and P are assumed to be positive,
the displacement u(t) is of order unity, and m is an integer which may take the
values m=1, 0, ÿ1, in order to allow results to be obtained for which the
associated linear unforced (P=0) oscillator is, respectively, statically stable,
neutrally stable, or statically unstable. In equation (1), the ®rst of the non-linear
terms is a softening inertia type, the second is a hardening inertia type, while the
third is a hardening static spring type.
Results of free undamped vibration analysis of equation (1) (P= d=0),

obtained by Hamdan and Shabaneh [1] indicated that for the case m=1,
regardless the value of e1 and e2, the period±amplitude (tÿA) relation exhibits a
softening behavior when, roughly, e1/e2> 1�6, and a hardening type behavior
when e1/e2< 1�6; when e1 0 1�6 e2 the period t becomes nearly constant,
independent of motion amplitude A, i.e., exhibits a nearly linear behavior, for all
values of A.
For the cases in which the associated linear oscillator in neutrally stable

(m=0) or statically unstable (m=ÿ1) the results obtained in reference [1]
indicate that, the period t exhibits a hardening behavior with amplitude A
variations regardless of the relative strength of the inertia non-linearities with
respect to the static hardening non-linearity; i.e., regardless of the value of e1
with respect to e2. It was also shown in [1] that the period of free oscillations of
these types of oscillators described in equation (1) (P= d=0) becomes nearly
constant independent of motion amplitude A, i.e., exhibits a linear behavior, at
relatively large values of A for all three cases m=1, 0, ÿ1. Furthermore, the
results presented in reference [1] indicate that, for the case m=1, a qualitative
failure of the single term harmonic balance method (SHB) occurs when e1 and e2
are in the range 1�5< e1/e2< 1�8.
The aim of this work is to extend the analysis presented in reference [1] by

determining quantitative and qualitative information about the steady state
response behavior of the harmonically forced oscillators of the type described in
equation (1). The emphasis is on situations for which ®rst order approximate
solutions may lead to qualitative as well as appreciable quantitative errors in the
steady state amplitude±frequency response.
A number of approximate analytic techniques are available for the analysis of

non-linear oscillators, such as those under consideration in equation (1). The
more commonly used of these methods are, the MMS, which in its standard
form, is applicable only to the case m=1, and the HB method which is
applicable for all three cases m=1, 0, ÿ1.
In order to illustrate the problem of interest of this work, a brief summary of

the procedural steps involved in the MMS and HB methods and limitations of
these methods, discussed in details in references [2±6] are presented in the sequel.
By applying the MMS method, which is applicable only to weakly non-linear
systems, the equation of motion can be ordered by introducing arbitrarily a non-
dimensional small gauge parameter e in the appropriate terms of the equation
[2]. For example, to analyze a resonance response, the non-linear terms, the
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forcing and, the usually assumed linear, damping terms are multiplied by the
small gauge parameter e so that these terms appear at the same time (same
order) in the perturbation scheme (equations) [2]. Thus the range of system
parameters and response amplitude over which the predicted perturbation
solution is satisfactory is ®xed in advance by the ordering scheme; however this
range is usually left unspeci®ed [6].
Furthermore, the amplitudes of different harmonics of the predicted

approximate periodic response are assumed to satisfy the established ordering
scheme which determines in advance the relative importance of each of these
harmonics and assumes the rapid attenuation of higher ones for the weakly non-
linear system [6]. Furthermore, the essence of the MMS perturbation method is
to seek asymptotically valid, usually low order, approximations to the steady
state periodic response by using a number of time scales and power series
expansions for the dependent variables and parameters of the assumed weakly
non-linear system in terms of a small positive gauge parameter e. These series
expansions are neither unique nor convergent, and several procedural steps have
been devised by various authors in order to obtain consistently ordered
(asymptotically valid) ®rst and higher order MMS results. This has led to, so
called, different ``versions'' of the MMS method which differ in, for example,
whether or not a transformation of time, T=Ot, is used, the way the detuning
parameters are introduced (i.e., the way the excitation frequency O is expanded
in power series of the perturbation parameter e), and in the way the partial time
derivatives for the amplitude and phase of the response main harmonic
component are used to obtain the second and higher order steady state response
[3±5, 7, 8]. Consider, for example, the problem, discussed in detail in reference
[3], of obtaining a uniformly valid second order MMS approximation to the
steady state primary resonance response of the weakly non-linear oscillator

�v� ed _v� v� eg�v� � e cos�Ot�, �2�
where e is a small positive parameter (0< eE 1), v is of order unity, de 0 and
g(v) is a static non-linear function. According to the MMS method [2], one
de®nes a number of time scales Tn= ent, n=0, 1, 2, . . . , where T0= t is the fast
time scale on which the main oscillatory behavior of the response occurs and Tn,
ne 1, are slow time scales on which the amplitude and phase modulations,
caused by the non-linearity, damping and response, take place. Then upon
expressing the time t derivatives in terms of the new time scales Tn, and
substituting assumed series expansions for the dependent variables, i.e.,

v�t, e� � v0�T0, T1, T2, . . .� � ev1�T0, T1, T2, . . .� � e2v2�T0, T1, T2, . . .� � O�e3�,
and in some cases, assumed series expansion for some or all system parameters
into equation (2), and equating the coef®cient of each power of e to zero, one
obtains a hierarchical set of linear partial differential equations:

D2
0v0 � v0 � 0, D2

0v1 � v1 � f1�v0, T0�, D2
0v2 � v2 � f2�v0, v1, T0, T1�;

D2
0vn � vn � _f2�v0, v1, v2, . . . , vnÿ1; T0, T1, T2, . . . , Tnÿ1�, �3�a-- c, . . . , n��
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where Dn= @/@Tn, and the fn, de®ned by the system non-linearity g(v), are
functions of the system parameters, i.e., damping and excitation amplitude and
frequency. These linear differential equations are then solved in sequence to the
desired order of approximation, where the solutions v0, v1, . . . , vnÿ1 appear as
forcing terms in the differential equation for vn. For the ®rst of these equations,
(equation (3a)), the solution is given by

v0�T0, T1, . . .� � A�T1, T2, . . .�eiT0 � cc, �4�
where cc is the complex conjugate of the preceding term, and A=A(T1, T2, . . . )
is the complex amplitude which is function of the slow time scales T1, T2, . . . .
One then solves equations (3b±n) sequentially for v1, v2, . . . , vn, where usually
only the particular solutions to each vi are considered. The fact that each of the
forcing terms fi in equations (3b±n) is a function of v0, as well as derivatives of v0
with respect to the different time scales Tn, where v0 is given by equation (4),
results in the appearance of resonance term of the form Ri e

iT0 + cc, in the
driving function fi in the equation for vi. This resonance (called secular) term,
leads to unbounded term in the solution for vi; therefore for each of the vi, and
thus v, to be periodic one must eliminate these secular (unbounded) behavior
producing terms in each of equations (3b±n) by setting each Ri=0. The
functions Ri are in general non-linear functions of the system parameters and
complex amplitude A, but are linear in DiA, D

2
iÿ1A, . . . , D2

1A, Diÿ1A, . . . , D1A.
One then solves Ri for the partial time derivative DiA of the complex amplitude
A with respect to the time scale Ti, and substitutes for D2

iÿ1A and Diÿ1A from the
solution of Riÿ1=0, to obtain an equation for DiA in the form

DiA � Ni�A, �A�, i � 1, . . . , n, �5�
where Ni�A, �A� are non-linear functions of system parameters and complex
amplitude A. The partial time derivative in equation (5) are then combined, to
obtain the total time derivative dA/dt by noting that A=A(T1, T2, . . . ) and

d

dt
� D0 � eD1 � e2D2, . . . : �6�

This process, known as reconstitution procedure [9±11], yields a power series
for the evolution of the complex amplitude A in the form [3]

dA

dt
� eN1�A, �A� � e2N2�A, �A� � � � � � eiNi�A, �A� � O�ei�1�, �7�

where �A is the complex conjugate of the amplitude A, The ith order steady
solution in the original non-linear problem (equation (2)) is then obtained from
equation (7) by setting dA/dt=0. Noting that A is complex, one substitutes into
the resulting dA/dT=0 equation the polar form A=(a/2)eif, where the
amplitude a and the phase f are real functions of the slow scales T1, T2, . . . .
Then upon separating the real and imaginary parts of the resulting equation, one
obtains two equations da/dt and df/dt, known as modulation equations,
de®ning the slow evolution of the amplitude a and the phase f of the main
Fourier component of the ith order steady state response of the original non-
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linear problem. The steady state response thus corresponds to the ®xed points of
these modulation equations, which are obtained by setting da/dt=0 and df/
dt=0. This leads to two real algebraic equations relating the ith order steady
state solution amplitude a and f to system parameters. By eliminating the phase
from these two algebraic equations, one then obtains a single algebraic equation,
known as the frequency±amplitude equation, relating the fundamental harmonic
amplitude and frequency of the ith order steady state periodic response to the
system parameters. The local stability of the obtained steady state solutions with
respect to in®nitesimal disturbances da and df can be analyzed by determining
the eigenvalues of the linearized modulation equations.
It is to be noted that, when carrying calculations to second or higher order,

there are two different ways, leading, in general, to two different results, to make
dA/dt in equation (7) equals to zero; i.e., there two different ways to obtain
second or higher order steady state solutions from equation (7). According to
the ®rst approach, known as MMS with reconstitution version I [3], the
condition dA/dt=0 in equation (7) (also called solvability condition), is
obtained by letting

N1�A, �A� � eN2�A, �A� � � � � � 0: �8�
Another way to meet the solvability condition dA/dt=0 in equation (7),
according to the so called MMS with reconstitution version II [3], is to set each
Ni equal to zero, e.g., Ni=0, i=1, 2, . . . . Obviously the two procedures lead to
the same steady state results at the ®rst order. They also lead to the same steady
state solution at the ith order if it happens that each of the functions N1, . . . , Ni

is identically zero [3]. Rahman and Burton [3] determined a second order
perturbation solution for the primary resonance response of the harmonically
driven, weakly non-linear (0< eE 1), Duf®ng oscillator

�u� ed _u� u� eu3 � eP0 cosOt: �9�
They used transformation of time T=Ot and found that formal application of
the MMS with reconstitution version I used, i.e., in [9±11], can in passing from
®rst to second and higher order generate additional spurious steady state
solutions (i.e., solutions which do not exist in the actual numerically obtained
response), and inconsistency in the ordering as the amplitude becomes relatively
large. For example, for the Duf®ng oscillator in equation (9), it was shown in
reference [3] that the MMS with reconstitution version I procedure leads to, at
the second order, an amplitude±frequency response relation in the form of a
polynomial of degree seven in the square of the steady state amplitude A of the
dominant harmonic. Thus, depending on the considered ranges in frequency O,
up to seven solutions may coexist where some of these solutions (spurious
solutions), although predicted to be stable, could not be obtained numerically
[3]. As a result of these extraneous (spurious) solutions, the second order steady
state frequency curves obtained this way were shown to exhibit qualitative
behavior that is substantially different (i.e., do not resemble) the actual
(numerically obtained) ones, even though the ®rst order solution is reasonably
acurate [3]. This implies that the second order terms in these solutions do not
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represent, as they should, a small correction to the ®rst order ones Rahman and
Burton [3] argued that the ``breakdown'' of these results at second order (also at
higher orders), is caused by a violation of the ordering requirement as a result of
the explicit dependence on e of the steady state solutions vi(T ) generated at each
level of approximations. For example, they argued that the MMS with
reconstitution version I procedure in references [9±11] may yield solutions
where each vi(T ) in the dependant v(T ) variable series expansion
v(T )= v0+ ev1+ e2v2+� � �, is a function of the parameter e, and thus violates
the stipulation of the MMS perturbation method that each of these vi(T ) is not
explicitly dependent on e. They showed that, for the Duf®ng oscillator in
equation (9), as a result of this explicit dependence of the vi's on e, the lowest
order in e of the neglected O(e3) terms in equation (8) is the same as that of the
retained N1(A, �A) and eN2�A, �A� terms in this equation. This according to
reference [3], violates the ordering requirement of the MMS perturbation
method, since the essence of this method is to obtain a uniformly valid
approximate solution where the neglected terms should be of higher order in e
than the retained ones. It was also shown in reference [3] that the amplitude of
the second order spurious solutions obtained for the Duf®ng oscillator in
equation (9) using the so called ``MMS with reconstitution version I'', becomes
relatively large as e is made small, and thus these spurious solutions are far
removed from the small amplitude solutions (i.e., from the backbone of the
frequency response curve); also these solutions, for small e, appear over small
bands of the excitation frequency. Therefore, by discarding these large amplitude
spurious solutions one may obtain, for small e, a second order steady state
response curve which resembles the actual one. In other words, the MMS with
reconstitution version I procedure, may yield qualitatively, as well as
quantitatively, correct second (and higher) order aproximations for weakly non-
linear (i.e., e small), systems provided that one disregards the additional
(spurious) large amplitude solutions. For the cases where the oscillator in
equation (9) is strongly non-linear (i.e., e is relatively large), the second order
spurious solutions were observed to spread over a wider bands of the excitation
frequency and move closer to the actual (numerical) solution (i.e., move closer to
the backbone curve of the actual solution), [3±5]. Consequently, as e is increased
from small values, the second order spurious solutions begin to interfere with,
i.e., become dif®cult to separate from, the actual solutions and thus begin to
change (distort) the qualitative (as well as quantitative) feature of the steady
state frequency response curve.
As indicated above, in the MMS with reconstitution version I procedure [9±

11], the second and higher order steady state solutions are obtained from
equation (8) by setting the entire right side of this equation to zero. On the other
hand, according to the so called MMS with reconstitution version II, suggested
by Rahman and Burton [3, 8], one may obtain second and higher order solutions
from equation (8) by requiring that each of the functions Ni in the right side of
this equation is set to zero, in conjuction with using either of the following two
procedural steps: (1) retain the homogeneous solutions for each of the vi or (2)
suppress the homogeneous solutions for the vi but expand both the excitation
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frequency O and damping ratio z in power series in e, (i.e., use O±z expansions):

O2 � 1� es1 � e2s2, z � z1 � ez� � � � :
Rahman and Burton [3, 8] explained that the use of either of these two
procedural steps is necessary to ensure that in each of the functions N1�A, �A�,
N2�A, �A�, . . . , exactly two new unknowns appear which are determined when
each of Ni�A, �A� is set to zero to obtain the steady state solution. They argued
that this so called MMS with reconstitution procedure version II leads to results
where the vn are not explicitly dependent on e. Their analysis of the primary
resonance response of the Duf®ng oscillator in equation (9) for the weakly non-
linear case (e=0�2, d=0�1, P=1) indicates that the second order solutions
obtained using the above MMS with reconstitution version II, with O±z
expansion show the correct qualitative and reasonably good quantitative,
behavior; however, this second order solution was found to overcorrect
``slightly'' at large response amplitudes. They indicated that they preferred using
the MMS with reconstitution version II with the O±z expansion instead of the
MMS with reconstitution version II in which one retains the homogenous
solutions (i.e., with the ®rst of the above two procedural steps), as the later was
found in reference [12] to suffer a breakdown at saddle node bifurcation points
in the steady state response of the Duf®ng oscillator in equation (9).
Nayfeh and Sanchez [10] used the MMS with reconstitution version I to

obtain a second order approximation to the primary resonance response in their
study of the onset of asymmetry-breaking and period doubling bifurcation, of
the forced softening Duf®ng oscillator:

�u� 2d _u� uÿ au3 � P cosOt, d, a > 0 �10�
They presented the amplitude±frequency response curves calculated using the
®rst and second order approximate solutions for the case P=0�3, d=0�2, a=1.
These curves showed that the second order approximations, for this case where
P, d and a are not relatively small, are in good (quantitative as well as
qualitative) agreement with those obtained by numerically integrating equation
(10); that is, these results indicate that the second order solutions obtained using
the MMS with reconstitution in [9±11], represent merely a ``slight'' additive
correction to the ®rst order solutions up to relatively large response amplitude,
i.e., for a response amplitude up to 00�85.
First and second order perturbation solutions for the primary resonance

response of the softening oscillator in equation (10) were also obtained by
Rahman and Burton [8] using a ``modi®ed MMS'' procedure presented in
reference [7] with reconstitution version II in conjuction with the O, instead of
(O±z), expansion. In accordance with this MMS procedure, they used
transformation of time T=Ot, and de®ned a new expansion parameter a= a(e)
using the free oscillation frequency±amplitude relation (backbone of the steady
state response curve) i.e., a= ea2/(4ÿ 3a2), where a is the steady state amplitude
of the response fundamental harmonic. They presented results for the relatively
strongly non-linear case P=0�23, d=0�2, e=1, which showed good agreement
between second order solutions and numerical results only for amplitudes less
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than 0�8. For larger amplitudes, the ®rst as well as the second order solutions
were found to breakdown and become sensitive to the way in which the steady
state amplitude is de®ned.

The effects of using transformation of time (i.e., T=Ot) and those of using
two different ways of introducing the frequency detuning, i.e., in the square of
excitation frequency or in the excitation frequency itself, with or without

transformation of time, as well as the effects of using the frequency expansion in
the inertia term only and in both the inertia and damping terms, on the second
order MMS reconstitution version I approximations to the primary resonance

response of the weakly non-linear hardening Duf®ng oscillator in equation (9)
were recently investigated by Hassan [4, 5]. It was shown that the combined
effects of using transformation of time (T=Ot) and introducing a detuning

parameter in the square of excitation frequency, i.e., O2=1+ es, can induce
spurious solutions and a non-uniform expansion at large response amplitudes. In
fact his results indicate that regardless of which of the above procedural steps, or

combination of, is used in the MMS with reconstitution version I, the second
order results show extraneous solutions at large response amplitudes. However,
the size of the gap(s) between the predicted backbone curve and the predicted

extraneous banches, and the size of frequency band(s) over which these
extraneous solutions appear were different for the above mentioned different
procedural steps or combinations of steps. It was argued that the use of

transformed time (T=Ot) with MMS with reconstitution version I leads to a
non-uniform expansion and to spurious solutions, and that these spurious
solutions and other effects of a non-uniform expansion can be eliminated by

transforming the partial derivatives with respect to different time scales in the
modulation equation(s) back to the real time t. It is to be noted at this point that
the approximate analytic solution should at least establish the correct qualitative

behavior of the actual non-linear steady state response in order to get non-
erroneous and reasonably accurate stability analysis results, i.e., in order to get
the correct nature of the bifurcation points.

The other commonly used method for obtaining approximate solution to non-
linear oscillators is the harmonic balance (HB). Unlike the MMS method, the
HB method does not place restriction on the strength of the non-linearity and is

applicable to those cases where the linear oscillator is statically unstable
(m=ÿ1) or neutrally stable (m=0). Therefore, the arbitrary reordering of the
various terms in the non-linear equation when using the MMS is not necessary

when using the HB method. It is to be noted that, in many cases the MMS and
the HB method yield basically the ®rst order approximate solutions. These ®rst
order approximations, however, do not always, even for a weakly non-linear

system, give a satisfactory, or even yield inaccurate, description of the qualitative
and/or quantitative behavior and stability of the actual system repsonse [6, 13].
For such cases, it is necessary to go to second or higher order approximations to

obtain realistic analytical description of the actual response and stability
analysis. Hamdan and Burton [13], for example, have shown that the qualitative
nature of the HB solution and the predicted stability boundaries of the softening
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Duf®ng oscillator in equation (4), change, for certain parameters ranges, if one
uses a two-modes HB solution rather than a single-mode solution.
It is to be noted that in the HB method a periodic solution of the dependent

variable is assumed in the form of a Fourier series, mostly truncated to only a
few leading harmonics which are assumed to be dominant and of equal level of
importance over the full range of system parameters [6]. Upon substituting the
assumed series solution in the equation of motion, and equating the coef®cients
of different harmonics to zero, one obtains a set of coupled non-linear algebraic
equations in the coef®cients of the assumed harmonics and frequency of motion.
These coupled non-linear equations, are then solved simultaneously to obtain an
approximation to the steady state periodic response. The number of these
coupled equations which need to be solved simultaneously is equal to the
number of harmonics in the assumed series solution.
Therefore, the use of a suf®ciently large number of harmonics to improve

accuracy results in a messy non-linear algebraic problem. Furthermore,
intuitively one expects the assumed HB solution to converge to the actual
solution as the number of harmonics in the assumed solution is increased. This is
however generally true provided that the harmonics in the assumed truncated
series solution are the dominant ones and the neglected harmonics are small
compared to the retained ones [6]. Furthermore, since the retained harmonics, as
indicated above, enjoy equal level of importance and are allowed to interact with
each other in a non-linear way, the problem of selecting the ``right'' combination
of these leading harmonics which will lead to the correct quantitative behavior of
the predicted response becomes a dif®cult task, especially when the non-
linearities are not small [6]. Hassan and Burton [6], as well as others, have shown
that for the forced oscillation of the hardening Duf®ng oscillator given by
equation (9) with e=1, the HB method in which only a few leading harmonics
are used can fail to predict some actually existing periodic solutions and/or it
may predict some spurious solutions which do not exist in the actual system
response. It was shown [6] that this qualitative failure of the HB method, which
may not be predicted by stability analysis, is neither restricted to the single
approximation nor to systems with asymmetric potential wells. It was suggested
[6] that to avoid erroneous results the approximate HB results should be checked
against numerical or experimental or a higher order HB approximation, i.e., by
increasing the number of harmonics in the assumed series solution.
In light of the above review, the objective of this work is to analyze the

periodic steady state response of the type of oscillators described in equation (1).
Interest here is in situations where the ®rst order approximate solutions may lead
to qualitative as well as appreciable quantitative errors is steady state amplitude±
frequency response curves as, i.e., when the response is strongly non-linear.
Single-mode and two-mode HB approximations, and second order MMS with
reconstitution version I and version II approximations to the steady-state
amplitude±frequency response curves are compared, for the case m=1 with
each other, and with those obtained by numerically integrating the equation of
motion. The transformation of time T=Ot and detuning in the square of
forcing frequency are used in the MMS with reconstitution version I and
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version II. The objective here is to assess the accuracy of these approximate
solutions in predicting the system response over some range of system
parameters by examining their ability or failure in establishing the correct
qualitative behavior of the actual (numerical) solution.
The qualitative behavior of the primary resonance response of the oscillator in

equation (1) for the cases m=0 and m=ÿ1 are studied, for selected range of
system parameter, using the single and two modes harmonic balance method and
compared to those obtained numerically. And ®nally, regions of ®rst order
stability are also presented.
To the authors' knowledge, despite its physical importance, studies dealing

with the forced vibration of oscillators having inertia and hardening static non-
linearities of the type described in equation (1) are not commonly available.

2. ANALYSIS

Here, approximate analytical solutions for the periodic steady state response,
having the same period as the excitation, of the non-linear oscillator described
by equation (1) are presented. These solutions are obtained using single mode
(HB), two modes (HB) and second order MMS with reconstitution version I and
version II.
A new time T=Ot is ®rst introduced so that equation (1) becomes;

O2�u� Od _u�mnu� e1O2u2�u� e1O2u _u2 � e2u3 � P cos�T� f� �11�
where dots are T derivative and the unknown phase f has been added to the
excitation so that one may obtain a fundamental harmonic response containing
a single trigonometric term.

2.1. SINGLE MODE HARMONIC BALANCE (SHB)

According to the SHB method, an approximate solution of equation (11),
takes the form;

u�T� � A cosT, �12�
where A is the steady state response amplitude. Substituting equation (12) into
equation (11), neglecting third harmonics which arise, and equating coef®cients
of the ®rst harmonics, one obtains the following equations:

�34e2 ÿ �e1=2�O2�A3 � �mÿ O2�A � P cosf, ÿ OdA � ÿP sinf: �13, 14�
The steady state frequency response is obtained by squaring and adding
equations (13) and (14) and solving for O2 as a function of A; this yields

O2 � R12
�����������������
R2

1 ÿ R2

q
, �15�

where

R1 � ÿ�d2 ÿ 3
2e2A

2 ÿ 3
4e1e2A

4 ÿ 2mÿ e1mA2�=�2� 2e1A2 � e21A
4=2�, �16�
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R2 � � 916e22A4 � 3
2mE2A

2 �m2 ÿ P2=A2�=�1� e1A2 � e21A
4=4�: �17�

Equation (15), yields two real solutions for O provided that the radical term is
real and less than R1; a single real solution is obtained when the radical term is
zero or greater the R1, and no real solution exists when R2

1 ÿ R2 < 0.
The steady state frequency response curves obtained using equation (15) are,

for convenience, presented and discussed in section 3.

2.2. TWO MODES HARMONIC BALANCE (2HB)

In order to improve the accuracy of SHB approximation one includes more
higher harmonics in the assumed solution in equation (12). In this work, only
one more mode is added to this equation, whereby the two-modes
approximation, having the same period as the excitation, to the steady state
solution of the system in equation (11) with odd non-linearities takes the form;

u�T� � A1 cosT� A3 cos 3T� B3 sin 3T: �19�
Substituting equation (19) into equation (12) and using the same procedure
followed previously and neglecting the higher order harmonics, one obtains the
following coupled non-linear algebraic equations for A1, A3, B3 and the phase f;

3
4e2A

3
1 � 3

4e2A
2
1A3 � 3

2e2A1A
2
3 � 3

2e2A1B
2
3 � Amÿ AO2 ÿ �e1=2�O2A3

ÿ 3
2e1O

2A2
1A3 ÿ 5e1O2A2

1A3 ÿ 5e1O2A2
1B3 � P cosf, �20�

3
4e2A

2
1B3 ÿ OdA1 ÿ 3

2e1O
2A2

1B3 � ÿP sinf, �21�

3
2e2A

2
1B3 � 3

4e2A
2
3B3 � 3

4e2B
3
3 � B3mÿ 3A3dOÿ 9O2B3

ÿ 5e1O2A2
1B3 ÿ 9

2e1O
2A2

3B3 ÿ 9
2e1O

2B3
3 � 0, �22�

�e2=4�A3
1 � 3

2e2A
3
1A3 � 3

4e2A
2
3 � 3

4e2A3B
2
3 � A3m� 3B3dOÿ 9A3O2

ÿ �e1=2�O2A3
1 ÿ 5e1O2A2

1A3 ÿ 9
2e1O

2A2
3 ÿ 9

2e1O
2A3B

2
3 � 0, �23�

These equations may be expressed in a more convenient form as follows. First,
squaring and adding equations (20) and (21) and solving for O2 leads to

aO4 � bO2 � c � 0 �24�
where:

a � 1� A2
1e1 � 3e1A1A3 � 10e1A2

3 � 10e1B2
3 � 1

4e1A
4
1 � 3

2e
2
1A

3
1A3

� 29
4 e

2
1A

2
1A

2
3 � 15e21A1A

2
3 � 25e21A

4
3

� 29
4 e

2
1A

2
1B

2
3 � 15e21A1A3B

2
3 � 50e21A

2
3 � 25e21B

4
3, �25�
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b � d2 ÿ 3
2e2A

2
1 ÿ 3

2e2A1A3 ÿ 3e2A2
3 ÿ 3e2B2

3 ÿ 3
4e1e2A

4
1 ÿ 3e1e2A3

1A3

ÿ 45
4 e1e2A

2
1A

2
3 ÿ 12e1e2A1A

2
3 ÿ 15e1e2A4

3 ÿ 45
4 e1e2A

2
1B

2
3 ÿ 12e1e2A1A3B

2
3

ÿ 30e1e2A2
3B

2
3 ÿ 15e1e2B4

3 ÿ 2mÿ e1mA2
1 ÿ 3e1mA1A3 ÿ 10e1mA2

3 ÿ 10e1mB2
3,

�26�

c � 9
16e

2
2A

4
1 � 9

8e
2
2A

3
1A3 � 45

16e
2
2A

2
1A

2
3 � 9

4e
2
2A1A

3
3 � 9

3e
2
2A

4
3 � 45

16e
2
2A

2
1B

2
3 � 9

4e
2
2A1A3B

2
3

� 9
2e

2
2A

2
3B

2
3 � 9

4e
2
2B

4
3 � 3

2e2mA2
1 � 3

2e2mA1A3 � 3e2mA2
3 � 3e2mB2

3

�m2 � 3e1dO3A1B3 ÿ 3
2e2dOA1B3 ÿ P2=A2

1: �27�
Next, equations (22) and (23) are solved implicitly for A3 and B3, respectively:

B3 �
�ÿ3

4e2B3�A2
3 � B2

3� � 9
2e1O

2B3�A2
3 � B2

3� � 3A3dO�
�32e2A2

1 � �mÿ 9O2 ÿ 5e1O2A2
1��

, �28�

A3 �
�A3

1��e1=2�O2 ÿ e2=4� ÿ 3
4e2A3�A2

3 � B2
3� ÿ 3dOB3 � 9

2e1O
2A3 � B2

3��
�32e2A2

1 �mÿ 9O2 ÿ 5e1O2A2
1�

: �29�

Equation (24) can be written using the form

O2 � R32
�����������������
R2

3 ÿ R4

q
, �30�

where R3 and R4 can be calculated from equation (27), so that R3= (ÿb/2a) and
R3= (c/a). Equation (30) has two real solutions provided that R2

3 > R4 and�����������������
R2

3 ÿ R4

p
< R3. A single real solution exists provided that R2

3 > R4 and�����������������
R2

3 ÿ R4

p
> R3, and no real solution exists when R2

3 < R4. Equations (28±30)
were solved iteratively with an accuracy of 10ÿ6 to de®ne the steady state
solution. The steady state frequency response curves obtained using these
equations are, for convenience, presented and discussed in section 3.

2.3. PERTURBATION MULTIPLE TIME SCALES APPROXIMATIONS (MMS)

In this subsection, second order approximation to the steady state response,
having the same period as the excitation, of equation (1) for the case m=1 are
obtained using MMS with reconstitution versions I and II. In order to apply
the MMS perturbation technique, it is necessary to reorder various terms in
equation (11), for example, since the concern is with primary resonance, the non-
linear terms, the damping and forcing are multiplied by a small gauge parameter,
e, so that they appear at the same order in the perturbation scheme. Accordingly
equation (11) becomes;

O2�u� ek _u�mu� ee1O2u2�u� ee1O2u _u2 � ee2u3 � eP cosT, �31�
where dots are T derivatives and k=Od. A frequency detuning is next
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introduced by noting that, for the primary resonance, the driving frequency
differs from the linear natural frequency by terms of O�e�, so;

O2 � 1� es: �32�

2.3.1. MMS version I

Upon substituting equation (32) into equation (31) and according to the
procedural steps discussed in section (1), equating like powers of e to zero, one
obtains;

D2
0u0 � u0 � 0, �33�

D2
0u1 � u1 � ÿ2D1D0u0 ÿ kD0u0 ÿ sD2

0u0 ÿ e1u20D
2
0u0

ÿ e1u0�D0u0�2 ÿ e2u30 � �p=2�eiT0 , �34�

D2
0u2 � u2 � ÿD2

1u0 ÿ 2D2D0u0 ÿ 2D0D1u1 ÿ 2sD1D0u0 ÿÿkD1u0

ÿ 2D1D0u1 ÿ kD0u1 ÿ sD2
0u1 ÿ 3e2u20u1 ÿ se1u20D

2
0u0

ÿ se1u0�D0u0�2 ÿ 2e1u20D1D0u0 ÿ e1u20D
2
0u1 ÿ 2e1u0u1D2

0u0

ÿ 2e1u0D0u0D1u0 ÿ e1u1�D0u0�2: �35�
The solution of equation (33) is:

u0�T0, T1, T2� � A�T1, T2�eiT0 � �A�T1, T2�eÿiT0 , �36�
where the T0, T1 and T2 are time scales and are used to obtain second order
solutions, and �A is the complex conjugate of the complex amplitude A=(a/2)eif

which is a function of the slow time scale. Substituting equation (36) in equation
(34), yields the following inhomogenous equation for u1�T0, T1, T2�;

D2
0u1 � u1 � eiT0 �ÿ2iD1A� sAÿ ikA� 2e1A2 �Aÿ 3e2A2 �A� p=2�

� e3iT0 �A3�2e1 ÿ e2�� � cc, �37�
where cc stands for the complex conjugate of the preceding terms. Eliminating
the terms in equation (37) that produce secular terms in u1 yields

2iD1A � �sÿ ik�A� �2e1 ÿ 3e2�A2 �A� p=2: �38�
Equation (38) de®nes the rate of change of A on the slow time scale Ti. The
steady state ®rst order solution can be obtained from equation (38) by equating
D1A to zero, so the frequency response is giving by:

s � �a2=4��3e2 ÿ 2e1�2
������������������������
�p=a�2 ÿ k2

q
: �39�
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According to MMS version I, the second order solution can be obtained by
solving equation (37) for u1, retaining the particular solution only, so that

u1 � �A3=8��e2 ÿ 2e1�e3iT0 � cc: �40�
Substituting equations (40) and (36) into equation (35), one obtains the
following equation for u2�T0, T1, T2�;
D2

0u2 � u2 � eiT0 �ÿD2
1Aÿ 2iD2Aÿ 2isD1Aÿ kD1Aÿ 4ie1A�AD1A

� 9
8e1�e2 ÿ 2e1�A3 �A2 ÿ 3

8e2�e2 ÿ 2e1�A3 �A2 � 2se1A2 �A�
� e3iT0 �ÿi�188 �e2 ÿ 2e1� � 4ie1�A2D1A� 9

8s�e2 ÿ 2e1�A3 ÿ 3
8ik�e2 ÿ 2e1�

� 2se1A3 � 18
8 e1�e2 ÿ 2e1�A4 �Aÿ 3

4e2�e2 ÿ 2e1�A4 �A�
� e5iT0 �158 e1�e2 ÿ 2e1�A5 ÿ 3

8e2�e2 ÿ 2e1�A5� � cc: �41�
The annulment of the secular terms in u2 requires that,

2iD2A � ÿD2
1Aÿ 2isD1Aÿ kD1Aÿ 4ie1A�AD1A� 9

8e1�e2 ÿ 2e1�A3 �A2

� 2se1A2 �Aÿ 3
8e2�e2 ÿ 2e1�A3 �A2: �42�

One now combines equation (38) and equation (42) to form a single equation for
the slow evolution of A in real time T,

dA=dT � eD1A� e2D2A�O�e3� �43�
where equation (38) is used to determine the term D2

1A which appears in
equation (42). This procedure known as reconstitution [9], leads to the explicit
form of equation (43);

2i dA=dT � e�A�sÿ ik� � �2e1 ÿ 3e2�A2 �A� p=2� � e2�ÿD2
1Aÿ 2isD1A

ÿ kD1Aÿ 4ie1A�AD1A� 9
8e1�e2 ÿ 2e1�A3 �A2 � 2se1A2 �A

ÿ 3
8e2�e2 ÿ 2e1�A3 �A2� � O�e3�: �44�

Following the procedure of MMS version I, one obtains the steady state
solutions by setting dA/dT to zero in equation (44) and then solving for A. This
leads to the second order frequency amplitude (a, s) relation, which using
Cramer's rule, becomes

D2 � �R1a22 ÿ R2a12�2 � �R2a11 ÿ R1a21�2, �45�
where

D � a11a22 ÿ a12a21, a11 � ekp=4, a12 � p�1ÿ e�34s� � 616e1 � 3
16e2�a2��,

a21 � ÿp�1ÿ e�34s� � 216e1 � 9
16e2�a2��, a22 � a11,
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R1 � ÿas� s�34e2 ÿ e1=2�a3 � e�a�34s2 ÿ k2=4� � sa3�e1=4ÿ 3
8e2�

� a5� 932e21 ÿ 9
32e1e2 ÿ 15

128e
2
2��,

R2 ÿ akÿ e�ksa� � 216e1 � 9
16e2�a2�:

Equation (45) can be written in the form:X7
n�0

Cn�e, p, k, s�a2n � 0, �46�

which is polynomial of degree seven in a2. It is clear that equation (45) is
algebraically complicated and one can obtain more than one solution for the
second order approximation of the steady state frequency response. Examples of
the results obtained using this equation are presented and discussed in section
(3).

2.3.2. MMS version II

In this subsection, the second order solution to the equation (31) is obtained
using MMS version II, with the frequency O and damping k expansions:

O2 � 1� es1 � e2s2 � � � � , k � k1 � ek2 � e2k3 � � � � : �47�
Accordingly, as explained in the introduction, the analysis proceeds as in the
MMS version II, but with the O±k expansions (47) instead of (32). This leads to;

D2
0u0 � u0 � 0, �48�

D2
0u1 � u1 � ÿ2D1D0u0 ÿ k1D0u0 ÿ s1D2

0u0 ÿ e1u20D
2
0u0

ÿ e1u0�D0u0�2 ÿ e2u30 � �p=2�eiT0 , �49�

D2
0u2 � u2 � ÿD2

1u0 ÿ 2D2D0u0 ÿ 2D0D1u1 ÿ 2s1D1D0u0 ÿ k1D1u0

ÿ 2D1D0u1 ÿ k1D0u1 ÿ k2D0u0 ÿ s1D2
0u1 ÿ s2D2

0u0

ÿ 3e2u20u1 ÿ s1e1u20D
2
0u0 ÿ s1e1u0�D0u0�2 ÿ 2e1u20D1D0u0

ÿ e1u20D
2
0u1 ÿ 2e1u0u1D2

0u0 ÿ 2e1u0D0u0D1u0 ÿ e1u1�D0u0�2: �50�
The solution to equation (48) is given by equation (36), also equation (40) still
holds. Annulment of secular terms in u1, from equation (49), yields

2iD1A � �s1 ÿ ik1�A� �2e1 ÿ 3e2�A2 �A� p=2: �51�
To obtain steady state solutions and according to MMS version II, one equates
each DiA to zero. Thus, the steady state ®rst order solution of equation (51),
may be expressed as;
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s1 � �a2=4��3e2 ÿ 2e1�2
������������������������
�p=a�2 ÿ k21

q
: �52�

Substituting equation (40) particular solution for u1 and equation (36) into
equation (50) and the annulment of the secular terms in u2 yields;

2iD2A � ÿD2
1Aÿ 2is1D1Aÿ k1D1A� s2Aÿ ik2Aÿ 4ie1A�AD1A

� 9
8e1�e2 ÿ 2e1�A3 �A2 � 2s1e1A2 �Aÿ 3

8e2�e2 ÿ 2e1�A3 �A2: �53�
Upon setting each DiA in equation (53) to zero, one obtains

s2 � 3
128�e22 ÿ 5e1e2 � 6e21�a4 ÿ s1e1a2=2, k2 � 0 �54�

The frequency response in terms of system parameters can now be obtained by
combining equations (52) and (54) and is expressed as follows;

O2 � 1� es1 � e2s2: �55�
For convenience the results obtained using equation (55) are presented and
discussed in section (3).

2.4. STABILITY OF THE STEADY STATE RESPONSE

The stability of the steady state response of the fundamental harmonic
approximation (12), is examined by introducing a small perturbation v(T ), i.e.,
by substituting u(T )=A cos(T )+ v(T ), into the equation (11), followed by use
of the steady state conditions (13) and (14). This leads to the following non-
linear variational equation

�vO2�1� e1A2=2� e1v2 � 2e1vA cosT� e1�A2=2� cos 2T�
� _v�dOÿ 2e1O2Av sinTÿ e1O2A2 sin 2T�
� v�32e2A2 �mÿ e1O2A2=2� e1O2 _v2 � 3

2e2A
2 cos 2Tÿ 3

2e1A
2 cos 2T�

� e1O2A2 _v2 cosT� v2A cosT�3e2 ÿ e1O2�
� e2v3 � �A2=4��2e1O2 ÿ e2� cos 3T: �56�

The stability is governed by the linear version of equation (56). In addition, the
excitation term on the right-side of the equation is deleted, because it has no
in¯uence on the stability of the response v(T). The linear stability is governed by
the standard form of the damped Mathieu equation.

�v� m _v� v�aÿ 2q cos 2T� � 0 �57�
where

a � �m� �A2=2��3e2 ÿ e1O2��=O2�1� e1A2=2�, m � dO=O2�1� e1A2=2�,
q � 3

4A
2�e1O2 ÿ e2�=O2�1� e1A2=2�:

�58�
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The leading term approximation to the stability boundaries of (57) associated
with the principal parametric resonance is given by [2].

a�q� � 12�q2 ÿ m2�1=2: �59�
If A, O, d, m, e1, e2 in equation (58) are such that the point a(q) lies between the
curves (59), the steady state solution is unstable to small disturbances. Thus the
conditions for instability may be stated in term of A, O, d, m, e1, e2 as follows:

m� A2

2
�3e2 ÿ e1O2�

� �
> O2 1� e1

A2

2

� �
ÿ ��34A2�e1O2 ÿ e2��2 ÿ �dO�2�1=2

� �
,

�60�

m� A2

2
�3e2 ÿ e1O2�

� �
< O2 1� e1

A2

2

� �
� ��34A2�e1O2 ÿ e2��2 ÿ �dO�2�1=2

� �
:

�61�
These instability conditions are identical to those one obtains using the MMS
results, i.e., by determining the eigenvalues of the linearized amplitude and phase
modulation equations to the ®rst MMS solution.

3. RESULTS AND DISCUSSION

The steady state frequency response of the non-linear oscillators governed by
equation (1) was calculated approximately, for given values of system parameters
e1, e2, d, m and excitation amplitude p, by using the single and two modes
harmonic balance method (SHB and 2HB), equations (15) and (24) respectively,

Figure 1. Steady state frequency response of the oscillator using SHB. m=1, P=0�25,
d=0�2: ÐÐ , e1=3�0 and e2=1�0; - - - - - - , e1=1�6 and e2=1�0; ± � ± � ± , e1=0�1 and e2=1�0.
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MMS with reconstitution version I (equation (45)) and MMS with reconstitution
version II (equation (55)). The concern of this work is on the strongly non-linear
cases; therefore, the steady state frequency response was calculated for cases in
which e1 and/or e2 are not small. Examples of the results of these calculations for
selected cases of system parameters e1, e2, d, m and excitation amplitude p are
displayed in Figures (1±9).

Figure 2. Steady state frequency response of the oscillator using SHB. m=0, P=0�25,
d=0�2: ÐÐ , e1=1�0 and e2=0�1; - - - - - - , e1=1�6 and e2=1�0; ± � ± � ± , e1=0�1 and e2=1�0.

Figure 3. Steady state frequency response of the oscillator using SHB. m=ÿ1, P=0�5,
d=0�2: ÐÐ , e1=5�0 and e2=1�0; - - - - - - , e1=1�6 and e2=1�0; ± � ± � ± , e1=0�1 and e2=1�0.
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In Figure 1, the steady state frequency response of the statically stable (m=1)
non-linear oscillator governed by equation (1) was obtained using single mode
harmonic balance method (SHB) for cases in which e1 is relatively large or small
with respect to e2. The results of Figure (1) shows that the steady state frequency

Figure 4. Steady state frequency response of the oscillator using SHB, 2HB and numerical inte-
gration: m=1, P=0�25, d=0�2, e1=0�1 and e2=1�0; ± � ± � ± , SHB; - - - - - - , 2HB; *, numeri-
cal; ÐÐ , instability boundary.

Figure 5. Steady state frequency response of the oscillator using SHB, 2HB and numerical inte-
gration: m=0, P=0�25, d=0�2, e1=0�1 and e2=1�0; ± � ± � ± , SHB; - - - - - - , 2HB; *, numeri-
cal; ÐÐ , instability boundary.
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response exhibits a softening behavior when, roughly, e1/e2> 1�6, hardening
behavior when e1/e2< 1�6, and resembles linear behavior when e1� 1�6e2.
In Figures 2 and 3, the frequency responses for the neutrally stable (m=0)

and statically unstable (m=ÿ1) cases were obtained using SHB. These results
show that the steady state frequency response is of hardening type regardless of
the value of e1 relative to e2.
In Figures 4, 5 and 6, for the three cases (m=1, 0, ÿ1) the instability

boundaries are shown as well as the frequency response curves obtained by using
single and two modes harmonic balance method (SHB and 2HB) and by
integrating equation (1) numerically by the fourth order Runge±Kutta method
with an integration step of 10ÿ3. The 2HB frequency response was obtained by a
direct iteration technique with accuracy of 10ÿ6 of the non-linear coupled
equations (28±30). It is shown that the 2HB improves the accuracy of the SHB
frequency response curves.
In Figures 7 and 8, the steady state frequency response curves for the case

(m=1) were obtained by using SHB, 2HB and MMS with reconstitution
version II ``®rst and second order'', all of the three methods predict the correct
qualitative ``hardening'' behavior when compared to the actual response
``numerically integrated''.
In Figure 9, the steady state frequency responses are shown for the Duf®ng

oscillator (m=1 and e1=0), the solutions are obtained using MMS with
reconstitution version I, version II and numerical integration. As mentioned in
section (1), the MMS version I leads to, at the second order, an amplitude±
frequency response relation in the form of a polynomial of degree seven in the
square of the steady state amplitude, as shown in equation (45). It is clear from
Figure (9), that MMS with reconstitution version I introduces incorrect results

Figure 6. Steady state frequency response of the oscillator using SHB, 2HB and numerical inte-
gration: m=ÿ1, P=0�5, d=0�2, e1=5�0 and e2=1�0; ± � ± � ± , SHB; - - - - - - , 2HB; *, numeri-
cal; ÐÐ , instability boundary.
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``additional spurious solutions have appeared'', and the frequency response are
distorted compared to MMS version II.

4. CONCLUSIONS

The results presented in this work indicate that for the class of strongly non-
linear oscillators governed by equation (1), ®rst order approximation obtained
by using harmonic balance (SHB) and perturbation (MMS) methods may lead

Figure 7. Steady state frequency response of the oscillator using SHB, 2HB, MMS version II
and numerical integration: m=1, P=0�25, d=0�2, e1=0�1 and e2=1�0; ÐÐ , SHB; - - - - - - ,
2HB; ± � ± � ± , MMS II ®rst order; ± � � ± , MMS II second order; *, numerical integration.

Figure 8. Expanded view of a portion of Figure 7.
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to appreciable, not only quantitative, but also qualitative errors in the predicted
response.
From the results presented in this work it appears that Multiple Time Scales

(MMS) with reconstitution version II in addition to being algebraically simpler,
can lead to elimination of the spurious solutions of the steady state response of
the oscillators governed by the equation (1), which may appear when one applies
MMS version I.
Appreciable improvement of the accuracy of the predicted response were

obtained using Two Modes Harmonic Balance (2MHB) and MMS version II
even when the non-linearity is relatively strong.
Further analysis of the qualitative behavior of the resonance curves for the

oscillators governed by equation (1) would require a more detailed stability
analysis, which is currently under consideration by the authors.
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